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Abstract—Our article mainly focuses on dealing with several 

limitations of conventional sliding mode control (SMC), 

proportional-integral-derivative SMC (PID-SMC), and 

integral SMC (ISMC) for 3-DOF robotic manipulators at the 

same time. The paper focuses on three main points: 

improving the control accuracy, reducing chattering 

phenomena, and the convergence speed of the system states. 

Therefore, we develop a novel adaptive neural sliding mode 

control (ANSMC) algorithm for 3-DOF parallel robotic 

manipulators which has a complicated dynamic model, 

including modeling uncertainties, frictional uncertainties, 

and external disturbances. The control method is designed 

from three main control techniques, including ISMC, Radial 

Basis Function Neural Network (RBFNN), and the adaptive 

technique. First, a new integral terminal sliding mode (ITSM) 

surface is proposed to enhance the response rate and 

convergence rate. Second, RBFNN is employed to address 

disturbances and uncertainties. Besides, RBFNN also plays 

the role in reducing chattering behavior. While the adaptive 

technique is integrated into the reaching control law to 

remove the need for the upper bound values. Consequently, 

the proposed control system provides a high tracking 

accuracy and fast convergence rate. The chattering 

phenomena are significantly diminished in control signals. 

Simulation results on a 3-DOF parallel manipulator have 

confirmed the effectiveness of the proposed control method.   
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radial basis function neural network, sliding mode controller 

 

I. INTRODUCTION 

Parallel robot manipulators have great benefits 

including high operation speed with good accuracy, less 

affected by gravity during motion, and a high rigidity that 

may be obtained with a small mass of the manipulator. 

Therefore, their applications have appeared in many fields. 

For example, flight simulators, automobile simulators, 

assembly of PCBs, high-speed/high-precision milling 

machines, and so on. Accompanying flexibility in 

operation is the complexity of the dynamic model and 

several drawbacks such as kinematic complication, 

singularity problems, or workspace limitation due to their 

closed-loop structure. Therefore, the operation 

performance expectations from parallel robot 
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manipulators should be started from the advanced control 

methods.  

Sliding Mode Control (SMC) is a robust control 

methodology for handling the approximation model which 

exists the unknown functions or uncertain terms [1]–[8]. 

To obtain the desired control performance for the system 

with the presence of uncertainties and external 

disturbances, the common way is to increase switching 

gain in the reaching control law. Particularly, the value of 

the switching gain is selected as a value bigger than the 

uncertainty upper bound value. This technique increases 

the robustness and the stability of the control input but that 

also adds chattering phenomena. Unfortunately, the upper 

boundaries of the uncertain components are the unknown 

values, which are not available in actual applications. 

Moreover, the trajectories of the system states under the 

conventional SMC will slowly respond and slowly 

converge to the sliding surface when it uses a not large 

switching gain value. In the literature, to deal with the 

mentioned problem in SMC, various control methods 

based on other methods such as PID-SMC [9], [10], ISMC 

[11], [12] have been suggested to enhance convergence 

and response. In general, these methods have faster 

response and convergence compared to conventional 

SMCs. However, the main shortcomings of SMC have yet 

to be addressed such as chattering, the upper boundaries of 

the uncertain components, and the exact computation of 

the dynamic model. According to the knowledge of the 

authors, all three weaknesses can be solved simultaneously 

by using neural networks (NNs) [13]–[18] The NNs can 

approximate unknown functions, functions are very 

difficult to linearize exactly (e.g. dynamic model, 

unknown uncertainty, or external disturbance). Because 

NN has arbitrarily approximated unknown functions. This 

entails only determining the upper bound value of the 

approximate error from the NN. This upper limit value is 

normally small and easily predictable. Accordingly, the 

value of the reaching control law is also used as a small 

value. As a result, chattering behavior is also lesser likely 

to appear in control inputs. Considering aspects such as 

simple design, strong approximation, convergence speed, 

and applicability in existing real systems, the radial basis 

function neural network (RBFNN) has the mentioned 

features [19].  
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From the stated reason, our article mainly focuses on 

dealing with several limitations of conventional SMC, PID 

SMC, and ISMC at the same time. The paper focuses on 

three main points: improving the control accuracy, 

reducing chattering phenomena, and the convergence 

speed of the system states. Therefore, we develop a novel 

trajectory tracking control algorithm for 3-DOF parallel 

robotic manipulators by introducing a new completely 

ITSM surface. The control method is designed from three 

main techniques, including ISMC, RBFNN, and the 

adaptive technique. First, a new ITSM sliding mode 

surface is proposed to improve the response rate and 

convergence rate. Second, RBFNN is employed to address 

disturbances and uncertainties, while the adaptive 

technique is integrated into the reaching control law to 

remove the need for the upper bound values. Consequently, 

the proposed control system provides a higher tracking 

accuracy and faster convergence rate than the classic SMC 

and another method [20]. In addition, the chattering is 

significantly diminished in control signals and the 

requirement of upper boundary value for sliding gain is 

also eliminated by using the adaptive technique like in [20]. 

Our paper is arranged as follows. The first section is an 

introduction. Section II describes the kinematic and 

dynamic model of 3-DOF planar parallel manipulators. 

Section III reports the classic SMC and the control 

proposal. Simulations are conducted in section IV. Finally, 

conclusions are given in section V. 

II. THE 3-DOF PLANAR PARALLEL MANIPULATORS 

A. The Geometry of the 3-DOF Planar Parallel 

Manipulators 

The geometry of the 3-DOF planar parallel robotic 

manipulators is described in Fig. 1. It operates on a 

horizontal plane in an Oxy reference frame.  There are 

three active joints, six passive joints, and the end-effector 

of this manipulator. Its link lengths are 𝑙1 = 𝐴𝑖𝐵𝑖 , 𝑙2 =
𝐵𝑖𝐶𝑖 , (𝑖 = 1,2,3) , and the end-effector 𝐶1𝐶2𝐶3  is an 

equilateral triangle in which 𝑙3 = 𝐶𝑖𝑃  is a radius of the 

circle encircling the three vertex points. In Fig. 1, 𝜃𝑎 =
[𝜃𝑎1, 𝜃𝑎2, 𝜃𝑎3]

𝑇  denotes the vector of three active joint 

angles, 𝜃𝑝 = [𝜃𝑝1, 𝜃𝑝2, 𝜃𝑝3]
𝑇  denotes the vector of three 

passive joint angles, and 𝑃 = [𝑥𝑃 , 𝑦𝑃 , 𝜙𝑃]
𝑇  denotes the 

vector of the end-effector position.  

 

Figure 1.   The kinematics of 3-DOF planar parallel manipulators. 

B. Dynamic Models of 3 DOF Planar Parallel 

Manipulators 

The dynamic model for a 3-DOF parallel robotic 

manipulator is given as in reference [17]: 

 𝑀𝜃̈𝑎 + 𝐶𝜃̇𝑎 + 𝐹𝑎 + ϱ(𝑡) = 𝜏𝑎 (1) 

where 𝜃̇𝑎 = [𝜃̇𝑎1 𝜃̇𝑎2 𝜃̇𝑎3]
𝑇  and 𝜃̈𝑎 =

[𝜃̈𝑎1 𝜃̈𝑎2 𝜃̈𝑎3]
𝑇  are respectively the angular velocity 

vector and angular acceleration vector at each active joint. 

𝑀 = 𝑀̂ + 𝛥𝑀 ∈ ℝ3×3 is the real inertia matrix. 𝐶 = 𝐶̂ +

𝛥𝐶 ∈ ℝ3×3 denotes the real Coriolis and centrifugal force 

matrix. 𝑀̂ ∈ ℝ3×3  and 𝐶̂ ∈ ℝ3×3  are the estimated 

matrices of 𝑀 and 𝐶 , respectively. 𝐹𝑎 ∈ ℝ3×1  and ϱ(𝑡) ∈

ℝ3×1 are the friction force vector and disturbance vector at 

the active joints, respectively.𝛥𝑀 ∈ ℝ3×3 and 𝛥𝐶 ∈ ℝ3×3 

are the bounded modeling errors. Reference [17] contains 

a detailed description of 𝑀 and 𝐶. 

The whole external disturbances and uncertainties are 

defined as: 

 𝛥𝜏𝑎 = 𝛥𝑀𝑎𝜃̈𝑎 + 𝛥𝐶𝑎𝜃̇𝑎 + 𝐹𝑎 + ϱ(𝑡) (2) 

Based on (1) and (2), the dynamic model is rewritten as: 

 𝑀̂𝜃̈𝑎 + 𝐶̂𝜃̇𝑎 + 𝛥𝜏𝑎 = 𝜏𝑎 (3) 

Assumption 1: [21] Suppose that the whole external 

disturbances and unknown uncertainties are bounded by: 

 |𝛥𝜏𝑎| ≤ 𝛩 (4) 

where 𝛩 is a positive constant. 

III. THE PROPOSED CONTROLLER 

A. Classic Sliding Mode Control 

The position error and the velocity error are defined as 

follows: 

 {
𝑒 = 𝜃𝑑 − 𝜃𝑎 ∈ ℝ3×1

𝑒̇ = 𝜃̇𝑑 − 𝜃̇𝑎 ∈ ℝ3×1
 (5) 

where 𝜃𝑑 ∈ ℝ3×1 stands for the desired path of the active 

joint angles, 𝜃𝑎 ∈ ℝ3×1 is the real path of the active joint 

angles. 

A linear sliding surface is selected as in [2] for the 3-

DOF planar parallel manipulator: 

 𝑠 = 𝑒̇ + 𝑐𝑒 ∈ ℝ3×1 (6) 

where 𝑐 = 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2, 𝑐3) ∈ ℝ3×3 is a positive matrix. 

For the desired performance of the robot system, the 

SMC is designed as: 

 {

𝜏𝑎 = 𝜏𝑒𝑞 + 𝜏𝑟

𝜏𝑒𝑞 = 𝑀̂(𝜃̈𝑑 + 𝑐𝑒̇) + 𝐶̂(𝜃𝑎, 𝜃̇𝑎)(𝜃̇𝑑 + 𝑐𝑒)

𝜏𝑟 = 𝜅𝑠𝑖𝑔𝑛(𝑠) + 𝐻𝑠

 (7) 

where 𝜅 = 𝑑𝑖𝑎𝑔(𝜅1, 𝜅2, 𝜅3) , and 𝐻 = 𝑑𝑖𝑎𝑔(𝐻1, 𝐻2, 𝐻3) 

are positive diagonal matrices. The term of 𝜏𝑒𝑞 ∈ ℝ3×1 is 

the equivalent control that maintains the system states on 

the sliding surface, while the term of 𝜏𝑟 ∈ ℝ3×1 
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manipulates the system states from initial values to reach 

the sliding surface. In addition, 𝜏𝑟  also plays the role in 

coping with the influence of uncertain nonlinear terms. To 

achieve the asymptotic stability of the control system, the 

sliding gain 𝜅  must be selected greater than the upper 

boundary value of the lumped uncertain terms 𝛩 . That 

generates two problems, including the existence of the 

chattering phenomena and the requirement of the 

mentioned upper boundary value. To solve two problems 

at once, RBFNN is employed to address disturbances and 

uncertainties, while the adaptive technique is integrated 

into the reaching control law to remove the need for the 

upper bound values. Furthermore, the convergence rate of 

the classic SMC also needs to be improved to provide 

better control performance for parallel robotic 

manipulators. That also will be handled in the next 

subsection. 

B. Novel Adaptive Neural Network Sliding Mode 

Controller 

Considering the dynamic model of the robot (3), a PID 

sliding surface is designed as in [22], which offers a faster 

response and lesser steady-state error than the traditional 

sliding surface: 

 𝑠 = 𝑒̇ + 𝑐𝑒 + 𝛽 ∫ 𝑒𝑑𝑡 (8) 

where 𝑠 = [𝑠1 𝑠2 𝑠3]𝑇 ∈ ℝ3×1 , 𝑐 = 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2, 𝑐3) ∈

ℝ3×3  and 𝛽 = 𝑑𝑖𝑎𝑔(𝛽1, 𝛽2, 𝛽3) ∈ ℝ3×3  are positive 

matrices.  

A novel ITSM surface is designed to improve siding 

surface (8) as follows: 

 
𝑠𝑖 = 𝑒̇𝑖 + 𝑐𝑖|𝑒𝑖|

𝑚𝑖 𝑠𝑔𝑛( 𝑒𝑖) + 𝛽𝑖 ∫|𝑒𝑖|
𝑛𝑖 𝑠𝑔𝑛( 𝑒𝑖) 𝑑𝑡

, 𝑖 = 1,2,3
 (9) 

where 𝑐𝑖 , 𝛽𝑖 > 0 , 𝑚𝑖 = 0.5(𝑝 + 𝑞) + 0.5(𝑝 −
𝑞) 𝑠𝑔𝑛(|𝑒𝑖| − 1) , 𝑛𝑖 = 0.5(𝑙 + 𝑟) + 0.5(𝑙 −
𝑟) 𝑠𝑔𝑛(|𝑒𝑖| − 1) , 𝑝 > 1 , 𝑙 > 1 , 0 < 𝑞, 𝑟 < 1 , 𝑠 =
[𝑠1 𝑠2 𝑠3]𝑇 ∈ ℝ3×1. 

Remark 1. Once |𝑒𝑖| is much greater than 1, 𝑚𝑖 = 𝑝 >
1  and 𝑛𝑖 = 𝑙 > 1 . |−𝑐𝑖|𝑒𝑖|

𝑚𝑖 𝑠𝑔𝑛( 𝑒𝑖)|  and 

|−𝛽𝑖 ∫|𝑒𝑖|
𝑛𝑖 𝑠𝑔𝑛( 𝑒𝑖) 𝑑𝑡|  play the role that offers faster 

convergence than (8). It infers that the error trajectories in 

(9) will quickly converge to 1 from any initial conditions. 

Once |𝑒𝑖|  is smaller than 1, 𝑚𝑖 = 𝑞 < 1  and 𝑛𝑖 = 𝑟 <
1 . |−𝑐𝑖|𝑒𝑖|

𝑚𝑖 𝑠𝑔𝑛( 𝑒𝑖)|  and |−𝛽𝑖 ∫|𝑒𝑖|
𝑛𝑖 𝑠𝑔𝑛( 𝑒𝑖) 𝑑𝑡| 

determine finite-time convergence and convergence speed 

of the proposed sliding surface is also faster than those (8) 

in this phase. It is concluded that the novel proposed 

sliding surface has been improved significantly compared 

to (8). 

From (9), we can get: 

 
𝜃̇𝑎𝑖 = 𝜃̇𝑑𝑖 + 𝑐𝑖|𝑒𝑖|

𝑚𝑖 𝑠𝑔𝑛( 𝑒𝑖)

                    +𝛽
𝑖 ∫|𝑒𝑖|

𝑛𝑖 𝑠𝑔𝑛( 𝑒𝑖) 𝑑𝑡 − 𝑠𝑖
 (10)  

Let 𝐴𝑖 = 𝜃̇𝑑𝑖 + 𝑐𝑖|𝑒𝑖|
𝑚𝑖 𝑠𝑔𝑛( 𝑒𝑖) + 𝛽𝑖 ∫|𝑒𝑖|

𝑛𝑖 𝑠𝑔𝑛( 𝑒𝑖) 𝑑𝑡 , 

𝑖 = 1,2,3 , 𝐴 = [𝐴1 𝐴2 𝐴3]
𝑇 . Therefore, (10) in matrix 

form as follows: 

 𝜃̇𝑎 = 𝐴 − 𝑠 (11) 

Differentiating 𝑠 in (9) to time, we have: 

 
𝑠̇𝑖 = 𝑒̈𝑖 +𝑚𝑖𝑐𝑖|𝑒𝑖|

𝑚𝑖−1𝑒̇𝑖 + 𝛽𝑖|𝑒𝑖|
𝑛𝑖 𝑠𝑔𝑛( 𝑒𝑖)

, 𝑖 = 1,2,3
 (12) 

To simplify, let 𝐵𝑖 = 𝑚𝑖𝑐𝑖|𝑒𝑖|
𝑚𝑖−1𝑒̇𝑖 +

𝛽𝑖|𝑒𝑖|
𝑛𝑖 𝑠𝑔𝑛( 𝑒𝑖) , 𝑖 = 1,2,3 ,  𝐵 = [𝐵1 𝐵2 𝐵3]

𝑇 . 

Equation (12) is presented in vector form as: 

 
𝑠̇ = 𝑒̈ + 𝐵

                = 𝜃̈𝑑 − 𝜃̈𝑎 + 𝐵
 (13 ) 

Multiplying both sides of (13) with 𝑀̂, we have 

𝑀̂𝑠̇ = 𝑀̂(𝜃̈𝑑 + 𝐵) − 𝑀̂𝜃̈𝑎    

                   = 𝑀̂(𝜃̈𝑑 + 𝐵) − (𝜏𝑎 − 𝐶̂𝜃̇𝑎 −△𝜏𝑎)

                             = 𝑀̂(𝜃̈𝑑 + 𝐵) + 𝐶̂(𝐴 − 𝑠) + 𝑓 − 𝜏𝑎

    (14)  

where 𝑓 = 𝛥𝜏𝑎 ∈ ℝ3×1. 

In fact, the term 𝑓  is an unknown component. To 

simplify control design and improve control performance, 

this term should be approximated to provide the closed-

loop control system. In this paper, the term 𝑓 is estimated 

precisely by using an RBFNN. 

The structure of RBFNN is depicted in Fig. 2. It consists 

of three layers: an input layer, a hidden layer with a non-

linear RBF activation, and a linear output layer. 

 

Figure 2.  The structure of RBFNN. 

The algorithm of an RBFNN is expressed as follows: 

 
𝜎𝑗 = 𝑒𝑥𝑝 (

‖𝑥−𝑧𝑗‖
2

𝑦𝑗
2 ) , 𝑗 = 1,2, . . . , 𝐿

𝑓 = 𝑊𝑇𝜎(𝑥) + 𝜁

 (15)  

where 𝑥 is the input state of the NN, 𝑚 is the input number 

of the NN, 𝐿 is the number of hidden layer nodes in the 

NN, 𝑛 is the output number of the NN, 𝑧𝑗  and 𝑦𝑗are the 

center and width of the hidden neuron 𝑗, and ‖. ‖ denotes 

the Euclidean norm. 𝜎(𝑥) = [𝜎1 𝜎2 . . . 𝜎𝐿]𝑇  is the 

output of the Gaussian function, 𝑊 ∈ ℝ𝐿×𝑛 is NN weight, 

𝜁 ∈ ℝ𝑛×1 is the approximation error of NN, and |𝜁| ≤ 𝜁𝑁. 

The input of RBFNN is chosen as: 

 𝑥 = [𝑒𝑇 𝑒̇𝑇]𝑇 ∈ ℝ6×1 (16)  
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The output of RBFNN is given as follows: 

 𝑓(𝑥) = 𝑊̂𝑇𝜎(𝑥) ∈ ℝ3×1 (17) 

The proposed controller is proposed as: 

 {

𝜏𝑎 = 𝜏𝑒𝑞 + 𝑓(𝑥) + 𝜏𝑟

𝜏𝑒𝑞 = 𝑀̂(𝜃̈𝑑 + 𝐵) + 𝐶̂𝐴

𝜏𝑟 = 𝑑𝑖𝑎𝑔(𝐾) 𝑠𝑔𝑛( 𝑠) + 𝐻𝑠

 (18) 

where 𝑓(𝑥)  is the output of RBFNN, which is used to 

approximate the whole uncertainties and external 

disturbances, 𝐻 = 𝑑𝑖𝑎𝑔(𝐻1, 𝐻2, 𝐻3) is a positive matrix, 

𝐾 = [𝐾1 𝐾2 𝐾3]
𝑇 is the adaptive vector, which is used 

to estimate the boundary values of the approximation 

errors of NN. The updating law of 𝐾 is expressed as: 

 𝐾̇𝑖 = {
𝛾𝑖|𝑠𝑖|       |𝑠𝑖| > 𝜆𝑖
0               |𝑠𝑖| ≤ 𝜆𝑖

, 𝑖 = 1,2,3 (19) 

in which, 𝛾 = 𝑑𝑖𝑎𝑔(𝛾1, 𝛾2, 𝛾3) , 𝛾𝑖  and 𝜆𝑖  are positive 

constants. 

The adaptation tuning law for the RBFNN is selected as 

 𝑊̇̂ = 𝛷𝜎(𝑥)𝑠𝑇 (20) 

where 𝛷 = 𝑑𝑖𝑎𝑔(𝛷1, 𝛷2, 𝛷3) is a positive matrix. 

The block diagram of the proposed control system is 

shown in Fig. 3. 

To check the stability of the proposed control method, 

the following proof will be given as follows: 

Proof. 

The estimation errors of NN’s weight and the boundary 

value of the NN’s approximation error are respectively 

defined as: 

 
𝑊̃ = 𝑊 − 𝑊̂ ∈ ℝ𝐿×3

𝐾 = 𝜁𝑁 − 𝐾
, (21) 

and the output estimation error is given as: 

 
𝑓 − 𝑓̂(𝑥) =𝑊𝑇𝜎(𝑥)+ 𝜁− 𝑊̂

𝑇
𝜎(𝑥)

= 𝑊̃
𝑇
𝜎(𝑥)+ 𝜁   

 (22) 

For stability investigation of the proposed controller, a 

positive definite Lyapunov function is selected as: 

 𝑉 =
1

2
𝑠𝑇𝑀̂𝑠 +

1

2
𝑡𝑟{𝑊̃𝑇𝛷−1𝑊̃} +

1

2
𝐾𝑇𝛾−1𝐾 (23) 

Then, the time derivative of V is 

 𝑉̇ = 𝑠𝑇𝑀̂𝑠̇ +
1

2
𝑠𝑇𝑀̇̂𝑠 + 𝑡𝑟 {𝑊̃𝑇𝛷−1𝑊̇̃} + 𝐾𝑇𝛾−1𝐾̇   (24) 

Applying the control input (18) to (14) and using (22), 

we have: 

 

𝑀̂𝑠̇ = 𝑀̂(𝜃̈𝑑 + 𝐵) + 𝐶̂(𝐴 − 𝑠) + 𝑓                     

 −(𝑀̂(𝜃̈𝑑 + 𝐵) + 𝐶̂𝐴 + 𝑓(𝑥) + 𝜏𝑟)

= −𝐶̂𝑠 + 𝑓 − 𝑓(𝑥) − 𝜏𝑟                           

= −𝐶̂𝑠 + 𝑊̃𝑇𝜎(𝑥) + 𝜁 − 𝜏𝑟                    

 (25) 

Substituting (18) and (25) into (24), one has 

 

𝑉̇ = 𝑠𝑇(−𝐶̂𝑠 + 𝑊̃𝑇𝜎(𝑥) + 𝜁 − 𝜏𝑟) +
1

2
𝑠𝑇𝑀̇̂𝑠                         

−𝑡𝑟 {𝑊̃𝑇𝛷−1𝑊̇̂} − 𝐾𝑇𝛾−1𝐾̇̂                                     

= 0.5𝑠𝑇 (𝑀̇̂ − 2𝐶̂) 𝑠 + 𝑡𝑟 {𝑊̃𝑇 (−𝛷−1𝑊̇̂ + 𝜎(𝑥)𝑠𝑇)}

+𝑠𝑇(𝜁 − 𝑑𝑖𝑎𝑔(𝐾̂) 𝑠𝑔𝑛( 𝑠) − 𝐻𝑠) − 𝐾𝑇𝛾−1𝐾̇̂      

(26) 

By referring to the updating laws (19) and (20), (26) can 

gain: 

 

𝑉̇ = 0.5𝑠𝑇 (𝑀̇̂ − 2𝐶̂) 𝑠 + 𝑠𝑇(𝜁 − 𝑑𝑖𝑎𝑔(𝐾̂) 𝑠𝑔𝑛( 𝑠) − 𝐻𝑠)

−(𝜁𝑁 − 𝐾̂)
𝑇
|𝑠|                                                             

= 0.5𝑠𝑇 (𝑀̇̂ − 2𝐶̂) 𝑠 + (𝑠𝑇𝜁 − 𝜁𝑁
𝑇|𝑠|) − 𝑠𝑇𝐻𝑠              

(27) 

From (27), it is known that the characteristic 𝑠𝑇 (𝑀̇̂ −

2𝐶̂) 𝑠 = 0 always exists in the robot. Thus, (27) becomes: 

 
𝑉̇ = (𝑠𝑇𝜁 − 𝜁𝑁

𝑇|𝑠|) − 𝑠𝑇𝐻𝑠                           

≤ ∑ (𝜁𝑖 − 𝜁𝑁𝑖)|𝑠| −
3
𝑖=1 ∑ 𝐻𝑖𝑠𝑖

23
𝑖=1 ≤ 0

 (28) 

We can see that 𝑉 ≥ 0 and 𝑉̇ ≤ 0. Therefore, the proof 

is completed. 

 

Figure 3.  Block diagram of the proposed controller. 
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IV. SIMULATIONS AND RESULT 

In this section, to demonstrate the effectiveness of the 

proposed control algorithm, a simulation is conducted for 

a 3-DOF planar parallel manipulator. This 3-DOF planar 

parallel manipulator was designed with SOLIDWORKS 

software (as shown in Fig. 4) and then embedded in a 

SIMULINK/MATLAB simulation environment using the 

Simscape Multibody Link toolbox. By using this method, 

the mechanical model in the simulation environment is 

almost identical to the real model. The designed 

parameters of this robotic manipulator are expressed in 

Table I. The configuration setting of the 

SIMULINK/MATLAB simulation environment is set 

under fixed-step with 0.001s fundamental sample time 

(ode5 Dormand-Prince). To verify the superior 

performance of the proposed controller and its 

improvement compared to two other methods including 

traditional SMC and method [20]. 

 

Figure 4.   3D SolidWorks model of a 3-DOF planar parallel 

manipulator. 

TABLE I. THE DESIGN PARAMETERS OF THIS ROBOT SYSTEM 

Links 
Length 

(m) 

Center of 

mass (m) 

Weight 

(kg) 

Moment of 
inertia (kg.m2) 

Active 

link 
𝑙1 = 0.2 0.1 0.5028 1.9971 × 10−3 

Passive 

link 
𝑙2 = 0.2 0.1 0.5512 2.4823 × 10−3 

End-

effector 
𝑙3 = 0.072 0 1.1985 6.0742 × 10−3 

 

The control signal of traditional SMC is designed in (7). 

The method [20] is constructed based on the 

combination of the PID sliding surface in (8), RBFNN, and 

the adaptive rule (19). The control signal of this method is 

given as follows: 

 

{
 
 

 
 
𝑠 = 𝑒̇ + 𝑐𝑒 + 𝛽 ∫ 𝑒𝑑𝑡

𝜏𝑎 = 𝜏𝑒𝑞 + 𝑓(𝑥) + 𝜏𝑟

𝜏𝑒𝑞 = 𝑀̂(𝜃̈𝑑 + 𝑐𝑒̇ + 𝛽𝑒) + 𝐶̂(𝜃̇𝑑 + 𝑐𝑒 + 𝛽 ∫ 𝑒𝑑𝑡)

𝜏𝑟 = 𝑑𝑖𝑎𝑔(𝐾) 𝑠𝑔𝑛( 𝑠) + 𝐻𝑠

    (29) 

where 𝑐 = 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2, 𝑐3) , 𝛽 = 𝑑𝑖𝑎𝑔(𝛽1, 𝛽2, 𝛽3) , and 

𝐻 = 𝑑𝑖𝑎𝑔(𝐻1, 𝐻2, 𝐻3)  are positive matrices, 𝑓(𝑥)  is the 

output of RBFNN, 𝐾 is an adaptive vector that is updated 

by the rule (19).  

The desired trajectory of the robot’s end-effector is 

designed to track the following trajectory: 

 {

𝑥𝑑 = 0.25 + 0.03 𝑐𝑜𝑠( 𝜋𝑡)

𝑦𝑑 = 0.5
√3

6
+ 0.03 𝑠𝑖𝑛( 𝜋𝑡)

𝜙𝑃𝑑 = 0

 (30) 

where 𝑥𝑑 , 𝑦𝑑 , 𝜙𝑃𝑑 are desired trajectories. 

The friction forces at active joints are modeled as 

follows: 

 𝐹𝑎 = [

2𝜃̇𝑎1 + 0.01 𝑠𝑔𝑛( 𝜃̇𝑎1)

2𝜃̇𝑎2 + 0.01 𝑠𝑔𝑛( 𝜃̇𝑎2)

2𝜃̇𝑎3 + 0.01 𝑠𝑔𝑛( 𝜃̇𝑎3)

] (31) 

To test the robustness of control methods, the uncertain 

terms are assumed such as 𝛥𝑀𝑎 = 0.1𝑀𝑎 , 𝛥𝐶𝑎 = 0.1𝐶𝑎 , 

and the external disturbance is added to the control systems 

as follows: 

 ϱ(t) = [

0.4 𝑠𝑖𝑛( 2𝑡)

0.5 𝑠𝑖𝑛( 3𝑡/2)
−0.4 𝑠𝑖𝑛( 𝑡)

], at t = 8s (32) 

The selected control parameters of the three control 

methods are chosen by repetitive testing to achieve the 

maximum performance of the three controllers. It is shown 

in Table II. 

TABLE II. SELECTED CONTROL PARAMETERS OF THREE CONTROLLERS 

Control 

Methods 

Control 
Paramet

ers 

Value 

SMC 
𝑐, 𝜅, 
𝐻 

𝑑𝑖𝑎𝑔(10,10,10), 𝑑𝑖𝑎𝑔(0.9,0.9,0.9), 
𝑑𝑖𝑎𝑔(5,5,5) 

Method 

[20] 

𝑐, 𝛽, 
𝐻 

𝑑𝑖𝑎𝑔(10,10,10), 𝑑𝑖𝑎𝑔(0.01,0.01,0.01), 
𝑑𝑖𝑎𝑔(5,5,5) 

𝑚, 𝐿, 𝑦𝑗  

𝑧, 
 
 
𝛷,𝑊0, 
𝛾𝑖 , 𝜆𝑖 

6,7,5, 

0.5 [
−1.5;−1;−0.5; 0; 0.5; 1; 1.5
. . .
−1.5;−1;−0.5; 0; 0.5; 1; 1.5

]ℝ6×7 

𝑑𝑖𝑎𝑔(500,500,500),0.1 × 𝐼7×3 
0.1,2 

Proposed 

Method 

𝑐𝑖 , 𝛽𝑖 ,𝐻 
𝑝, 𝑞, 𝑙, 𝑟 

10,0.01, 𝑑𝑖𝑎𝑔(5,5,5) 
1.6,0.8,1.6,0.8 

𝑚, 𝐿, 𝑦𝑗  

𝑧, 
 
 
𝛷,𝑊0, 
𝛾𝑖 , 𝜆𝑖 

6,7,5, 

0.5 [
−1.5;−1;−0.5; 0; 0.5; 1; 1.5
. . .
−1.5;−1;−0.5; 0; 0.5; 1; 1.5

]ℝ6×7 

𝑑𝑖𝑎𝑔(500,500,500),0.1 × 𝐼7×3 
0.1,2 

To analyze the position tracking accuracy and make an 

easy evaluation, tracking errors of active joints are 

considered after the period of convergence around the 

equilibrium point. The investigation time is 𝑡 = 1 → 20𝑠, 

the control errors are calculated by (33) and the results are 

shown in Table III. 
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𝐸1 = √
1

𝑁
∑ (𝜃1𝑑𝑖 − 𝜃1𝑎𝑖)

2𝑁
𝑖=1 , 𝐸2 = √

1

𝑁
∑ (𝜃2𝑑𝑖 − 𝜃2𝑎𝑖)

2𝑁
𝑖=1

𝐸3 = √
1

𝑁
∑ (𝜃3𝑑𝑖 − 𝜃3𝑎𝑖)

2𝑁
𝑖=1

(33) 

where N  is the number of considered samples. 𝜃1𝑑𝑖, 𝜃2𝑑𝑖, 

𝜃1𝑑𝑖, and 𝜃1𝑖, 𝜃2𝑖, 𝜃3𝑖 are the desired angles of the active 

joints and real angles of the active joints at time index 𝑖 
respectively.  

The simulation results of three control schemes 

consisting of traditional SMC, the controller [20], and the 

proposed controller for a 3-DOF planar parallel robot are 

shown in Figs. 5-10. Fig. 5 and Fig. 6 respectively show 

the desired path and the actual path of the end-effector in 

the XY coordinate system and the end-effector’s rotation 

angle. 

In this paper, we mainly focus on improving 

convergence speed and tracking accuracy. Look at the 

zoomed-in parts of Figs. 5, 6, and 7 in the reaching phase, 

it is easily seen that the trajectory under the proposed 

controller quickly approaches the desired trajectory. It has 

the fastest convergence among all of the three control 

methods. 

 

Figure 5.  The desired path and actual path of the end-effector in the 
XY-coordinate system under three different controllers. 

 

Figure 6.  The desired path and actual path of the rotary angle of the 
end-effector under three different controllers. 

In terms of tracking accuracy, the tracking simulation 

results from Figs. 5-7, and Table III shows that the 

proposed controller has the smallest control errors. It has 

better tracking accuracy than the method [20] (from 10−5 

to 10−6 as shown in Table III). 

TABLE III. THE ROOT MEAN SQUARE OF CONTROL ERRORS AT ACTIVE 

JOINTS OF THREE CONTROLLERS 

Control 

Methods 1E  2E  3E  

SMC 3.043 × 10−4 3.634 × 10−4 3.269 × 10−4 

Method 

[20] 
1.624 × 10−5 1.274 × 10−5 0.769 × 10−5 

Proposed 

Method 
1.181 × 10−6 0.927 × 10−6 0.500 × 10−6 

 

Figure 7.   The control errors of joints under three control methods. 

The control input signals of the three controllers are 

shown in Fig. 8. Both method [20] and the proposed 

controller have impressively reduced chattering behavior 

in their control signals. Because these controllers are 

applied RBFNN to reduce the effects of uncertainties and 

external disturbances. While the conventional SMC still 

exists serious chattering phenomena in its control signals 

because of the large sliding gain that is used to combat the 

effects of uncertain terms. 

 

Figure 8.   The control input signals of three control methods. 
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Fig. 9 shows the estimated values of the whole 

uncertainties and external disturbances under the 

controller [20] and the proposed controller. 

Fig. 10 illustrates the adaptive values of sliding gain 

under the controller [20] and the proposed controller. By 

using an adaptive technique integrated into the reaching 

control law, the need for the upper bound values has been 

removed. 

 

Figure 9.  The estimated values of the whole uncertainties and 
controller [20] and the proposed controller. 

 
Figure 10. The adaptive values of sliding gain under controller [20] and 

proposed controller. 

V. CONCLUSION 

In this paper, we developed a novel ANSMC algorithm 

for 3-DOF parallel robotic manipulators which has a 

complicated dynamic model, including modeling 

uncertainties, frictional uncertainties, and external 

disturbances. The paper focuses on dealing with several 

limitations of conventional SMC, PID-SMC, and ISMC 

for 3-DOF robot manipulators at the same time. The paper 

has addressed three main points: improving the control 

accuracy, reducing chattering phenomena, and the 

convergence rate of the system states. To obtain the control 

objective, the proposed control method has been designed 

from the advantages of main control techniques, including 

ISMC, RBFNN, and the adaptive technique. Consequently, 

the proposed control system provides a higher tracking 

accuracy and faster convergence rate than the classic SMC 

and method [20]. The chattering is significantly 

diminished in control signals and the requirement of upper 

boundary value for sliding gain is also eliminated by using 

the adaptive technique. A 3-DOF planar parallel 

manipulator has been designed by SolidWorks, then it has 

been embedded in MATLAB/Simulink environment in 

verifying the effectiveness of the proposed control system.  

From the performance comparison, it could be 

concluded that the control performance of the proposed 

controller including tracking accuracy and fast 

convergence has been significantly enhanced compared to 

traditional SMC and controller [20]. The control proposal 

is high efficiency in the tracking control problems for 3-

DOF planar parallel manipulators. 
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